Returns the remainder of the division of this value by x.
Returns the remainder of the division of this value by x.
Returns the remainder of the division of this value by x.
Returns the remainder of the division of this value by x.
Returns the remainder of the division of this value by x.
Returns the remainder of the division of this value by x.
Returns the remainder of the division of this value by x.
Returns the bitwise AND of this value and x.
Returns the bitwise AND of this value and x.
(0xf0 & 0xaa) == 0xa0 // in binary: 11110000 // & 10101010 // -------- // 10100000
Returns the bitwise AND of this value and x.
Returns the bitwise AND of this value and x.
(0xf0 & 0xaa) == 0xa0 // in binary: 11110000 // & 10101010 // -------- // 10100000
Returns the bitwise AND of this value and x.
Returns the bitwise AND of this value and x.
(0xf0 & 0xaa) == 0xa0 // in binary: 11110000 // & 10101010 // -------- // 10100000
Returns the bitwise AND of this value and x.
Returns the bitwise AND of this value and x.
(0xf0 & 0xaa) == 0xa0 // in binary: 11110000 // & 10101010 // -------- // 10100000
Returns the bitwise AND of this value and x.
Returns the bitwise AND of this value and x.
(0xf0 & 0xaa) == 0xa0 // in binary: 11110000 // & 10101010 // -------- // 10100000
Returns the product of this value and x.
Returns the product of this value and x.
Returns the product of this value and x.
Returns the product of this value and x.
Returns the product of this value and x.
Returns the product of this value and x.
Returns the product of this value and x.
Returns the sum of this value and x.
Returns the sum of this value and x.
Returns the sum of this value and x.
Returns the sum of this value and x.
Returns the sum of this value and x.
Returns the sum of this value and x.
Returns the sum of this value and x.
Converts this PosZInt's value to a string then concatenates the given string.
Converts this PosZInt's value to a string then concatenates the given string.
Returns the difference of this value and x.
Returns the difference of this value and x.
Returns the difference of this value and x.
Returns the difference of this value and x.
Returns the difference of this value and x.
Returns the difference of this value and x.
Returns the difference of this value and x.
Returns the quotient of this value and x.
Returns the quotient of this value and x.
Returns the quotient of this value and x.
Returns the quotient of this value and x.
Returns the quotient of this value and x.
Returns the quotient of this value and x.
Returns the quotient of this value and x.
Returns true if this value is less than x, false otherwise.
Returns true if this value is less than x, false otherwise.
Returns true if this value is less than x, false otherwise.
Returns true if this value is less than x, false otherwise.
Returns true if this value is less than x, false otherwise.
Returns true if this value is less than x, false otherwise.
Returns true if this value is less than x, false otherwise.
Returns this value bit-shifted left by the specified number of bits, filling in the new right bits with zeroes.
Returns this value bit-shifted left by the specified number of bits, filling in the new right bits with zeroes.
6 << 3 == 48 // in binary: 0110 << 3 == 0110000
Returns this value bit-shifted left by the specified number of bits, filling in the new right bits with zeroes.
Returns this value bit-shifted left by the specified number of bits, filling in the new right bits with zeroes.
6 << 3 == 48 // in binary: 0110 << 3 == 0110000
Returns true if this value is less than or equal to x, false otherwise.
Returns true if this value is less than or equal to x, false otherwise.
Returns true if this value is less than or equal to x, false otherwise.
Returns true if this value is less than or equal to x, false otherwise.
Returns true if this value is less than or equal to x, false otherwise.
Returns true if this value is less than or equal to x, false otherwise.
Returns true if this value is less than or equal to x, false otherwise.
Returns true if this value is greater than x, false otherwise.
Returns true if this value is greater than x, false otherwise.
Returns true if this value is greater than x, false otherwise.
Returns true if this value is greater than x, false otherwise.
Returns true if this value is greater than x, false otherwise.
Returns true if this value is greater than x, false otherwise.
Returns true if this value is greater than x, false otherwise.
Returns true if this value is greater than or equal to x, false otherwise.
Returns true if this value is greater than or equal to x, false otherwise.
Returns true if this value is greater than or equal to x, false otherwise.
Returns true if this value is greater than or equal to x, false otherwise.
Returns true if this value is greater than or equal to x, false otherwise.
Returns true if this value is greater than or equal to x, false otherwise.
Returns true if this value is greater than or equal to x, false otherwise.
Returns this value bit-shifted left by the specified number of bits, filling in the right bits with the same value as the left-most bit of this.
Returns this value bit-shifted left by the specified number of bits, filling in the right bits with the same value as the left-most bit of this. The effect of this is to retain the sign of the value.
-21 >> 3 == -3 // in binary: 11111111 11111111 11111111 11101011 >> 3 == // 11111111 11111111 11111111 11111101
Returns this value bit-shifted left by the specified number of bits, filling in the right bits with the same value as the left-most bit of this.
Returns this value bit-shifted left by the specified number of bits, filling in the right bits with the same value as the left-most bit of this. The effect of this is to retain the sign of the value.
-21 >> 3 == -3 // in binary: 11111111 11111111 11111111 11101011 >> 3 == // 11111111 11111111 11111111 11111101
Returns this value bit-shifted right by the specified number of bits, filling the new left bits with zeroes.
Returns this value bit-shifted right by the specified number of bits, filling the new left bits with zeroes.
-21 >>> 3 == 536870909 // in binary: 11111111 11111111 11111111 11101011 >>> 3 == // 00011111 11111111 11111111 11111101
21 >>> 3 == 2 // in binary: 010101 >>> 3 == 010
Returns this value bit-shifted right by the specified number of bits, filling the new left bits with zeroes.
Returns this value bit-shifted right by the specified number of bits, filling the new left bits with zeroes.
-21 >>> 3 == 536870909 // in binary: 11111111 11111111 11111111 11101011 >>> 3 == // 00011111 11111111 11111111 11111101
21 >>> 3 == 2 // in binary: 010101 >>> 3 == 010
Returns the bitwise XOR of this value and x.
Returns the bitwise XOR of this value and x.
(0xf0 ^ 0xaa) == 0x5a // in binary: 11110000 // ^ 10101010 // -------- // 01011010
Returns the bitwise XOR of this value and x.
Returns the bitwise XOR of this value and x.
(0xf0 ^ 0xaa) == 0x5a // in binary: 11110000 // ^ 10101010 // -------- // 01011010
Returns the bitwise XOR of this value and x.
Returns the bitwise XOR of this value and x.
(0xf0 ^ 0xaa) == 0x5a // in binary: 11110000 // ^ 10101010 // -------- // 01011010
Returns the bitwise XOR of this value and x.
Returns the bitwise XOR of this value and x.
(0xf0 ^ 0xaa) == 0x5a // in binary: 11110000 // ^ 10101010 // -------- // 01011010
Returns the bitwise XOR of this value and x.
Returns the bitwise XOR of this value and x.
(0xf0 ^ 0xaa) == 0x5a // in binary: 11110000 // ^ 10101010 // -------- // 01011010
Returns this if this > that or that otherwise.
Returns this if this > that or that otherwise.
Returns this if this < that or that otherwise.
Returns this if this < that or that otherwise.
Create an inclusive Range from this PosZInt value
to the specified end with the specified step value.
Create an inclusive Range from this PosZInt value
to the specified end with the specified step value.
The final bound of the range to make.
The number to increase by for each step of the range.
A scala.collection.immutable.Range from this up to
and including end.
Create an inclusive Range from this PosZInt value
to the specified end with step value 1.
Create an inclusive Range from this PosZInt value
to the specified end with step value 1.
The final bound of the range to make.
A scala.collection.immutable.Range from this up to
and including end.
Returns a string representation of this PosZInt's underlying Int as an
unsigned integer in base 2.
Returns a string representation of this PosZInt's underlying Int as an
unsigned integer in base 2.
The unsigned integer value is the argument plus 232
if this PosZInt's underlying Int is negative; otherwise it is equal to the
underlying Int. This value is converted to a string of ASCII digits
in binary (base 2) with no extra leading 0s.
If the unsigned magnitude is zero, it is represented by a
single zero character '0'
('\u0030'); otherwise, the first character of
the representation of the unsigned magnitude will not be the
zero character. The characters '0'
('\u0030') and '1'
('\u0031') are used as binary digits.
the string representation of the unsigned integer value
represented by this PosZInt's underlying Int in binary (base 2).
Converts this PosZInt to a Byte.
Converts this PosZInt to a Byte.
Converts this PosZInt to a Char.
Converts this PosZInt to a Char.
Converts this PosZInt to a Double.
Converts this PosZInt to a Double.
Converts this PosZInt to a Float.
Converts this PosZInt to a Float.
Returns a string representation of this PosZInt's underlying Int as an
unsigned integer in base 16.
Returns a string representation of this PosZInt's underlying Int as an
unsigned integer in base 16.
The unsigned integer value is the argument plus 232
if this PosZInt's underlying Int is negative; otherwise, it is equal to the
this PosZInt's underlying Int This value is converted to a string of ASCII digits
in hexadecimal (base 16) with no extra leading
0s. If the unsigned magnitude is zero, it is
represented by a single zero character '0'
('\u0030'); otherwise, the first character of
the representation of the unsigned magnitude will not be the
zero character. The following characters are used as
hexadecimal digits:
0123456789abcdef
These are the characters '\u0030' through
'\u0039' and '\u0061' through
'\u0066'. If uppercase letters are
desired, the toUpperCase method may
be called on the result.
the string representation of the unsigned integer value
represented by this PosZInt's underlying Int in hexadecimal (base 16).
Converts this PosZInt to an Int.
Converts this PosZInt to an Int.
Converts this PosZInt to a Long.
Converts this PosZInt to a Long.
Returns a string representation of this PosZInt's underlying Int as an
unsigned integer in base 8.
Returns a string representation of this PosZInt's underlying Int as an
unsigned integer in base 8.
The unsigned integer value is this PosZInt's underlying Int plus 232
if the underlying Int is negative; otherwise, it is equal to the
underlying Int. This value is converted to a string of ASCII digits
in octal (base 8) with no extra leading 0s.
If the unsigned magnitude is zero, it is represented by a
single zero character '0'
('\u0030'); otherwise, the first character of
the representation of the unsigned magnitude will not be the
zero character. The following characters are used as octal
digits:
01234567
These are the characters '\u0030' through
'\u0037'.
the string representation of the unsigned integer value
represented by this PosZInt's underlying Int in octal (base 8).
Converts this PosZInt to a Short.
Converts this PosZInt to a Short.
A string representation of this PosZInt.
A string representation of this PosZInt.
Returns this value, unmodified.
Returns the negation of this value.
Returns the bitwise negation of this value.
Returns the bitwise negation of this value.
~5 == -6 // in binary: ~00000101 == // 11111010
Create a Range from this PosZInt value
until the specified end (exclusive) with the specified step value.
Create a Range from this PosZInt value
until the specified end (exclusive) with the specified step value.
The final bound of the range to make.
The number to increase by for each step of the range.
A scala.collection.immutable.Range from this up to but
not including end.
Create a Range from this PosZInt value
until the specified end (exclusive) with step value 1.
Create a Range from this PosZInt value
until the specified end (exclusive) with step value 1.
The final bound of the range to make.
A scala.collection.immutable.Range from this up to but
not including end.
The Int value underlying this PosZInt.
The Int value underlying this PosZInt.
Returns the bitwise OR of this value and x.
Returns the bitwise OR of this value and x.
(0xf0 | 0xaa) == 0xfa // in binary: 11110000 // | 10101010 // -------- // 11111010
Returns the bitwise OR of this value and x.
Returns the bitwise OR of this value and x.
(0xf0 | 0xaa) == 0xfa // in binary: 11110000 // | 10101010 // -------- // 11111010
Returns the bitwise OR of this value and x.
Returns the bitwise OR of this value and x.
(0xf0 | 0xaa) == 0xfa // in binary: 11110000 // | 10101010 // -------- // 11111010
Returns the bitwise OR of this value and x.
Returns the bitwise OR of this value and x.
(0xf0 | 0xaa) == 0xfa // in binary: 11110000 // | 10101010 // -------- // 11111010
Returns the bitwise OR of this value and x.
Returns the bitwise OR of this value and x.
(0xf0 | 0xaa) == 0xfa // in binary: 11110000 // | 10101010 // -------- // 11111010
An
AnyValfor non-negativeInts.Because
PosZIntis anAnyValit will usually be as efficient as anInt, being boxed only when anIntwould have been boxed.The
PosZInt.applyfactory method is implemented in terms of a macro that checks literals for validity at compile time. CallingPosZInt.applywith a literalIntvalue will either produce a validPosZIntinstance at run time or an error at compile time. Here's an example:scala> import anyvals._ import anyvals._ scala> PosZInt(1) res0: org.scalactic.anyvals.PosZInt = PosZInt(1) scala> PosZInt(0) res1: org.scalactic.anyvals.PosZInt = PosZInt(0) scala> PosZInt(-1) <console>:14: error: PosZInt.apply can only be invoked on a non-negative (i >= 0) integer literal, like PosZInt(42). PosZInt(-1) ^PosZInt.applycannot be used if the value being passed is a variable (i.e., not a literal), because the macro cannot determine the validity of variables at compile time (just literals). If you try to pass a variable toPosZInt.apply, you'll get a compiler error that suggests you use a different factor method,PosZInt.from, instead:scala> val x = 1 x: Int = 1 scala> PosZInt(x) <console>:15: error: PosZInt.apply can only be invoked on an integer literal, like PosZInt(42). Please use PosZInt.from instead. PosZInt(x) ^The
PosZInt.fromfactory method will inspect the value at runtime and return anOption[PosZInt]. If the value is valid,PosZInt.fromwill return aSome[PosZInt], else it will return aNone. Here's an example:The
PosZInt.applyfactory method is marked implicit, so that you can pass literalInts into methods that requirePosZInt, and get the same compile-time checking you get when callingPosZInt.applyexplicitly. Here's an example:scala> def invert(pos: PosZInt): Int = Int.MaxValue - pos invert: (pos: org.scalactic.anyvals.PosZInt)Int scala> invert(0) res7: Int = 2147483647 scala> invert(Int.MaxValue) res8: Int = 0 scala> invert(-1) <console>:15: error: PosZInt.apply can only be invoked on a non-negative (i >= 0) integer literal, like PosZInt(42). invert(-1) ^This example also demonstrates that the
PosZIntcompanion object also defines implicit widening conversions when either no loss of precision will occur or a similar conversion is provided in Scala. (For example, the implicit conversion fromIntto Float in Scala can lose precision.) This makes it convenient to use aPosZIntwhere anIntor wider type is needed. An example is the subtraction in the body of theinvertmethod defined above,Int.MaxValue - pos. AlthoughInt.MaxValueis anInt, which has no-method that takes aPosZInt(the type ofpos), you can still subtractpos, because thePosZIntwill be implicitly widened toInt.