final class FiniteDouble extends AnyVal

An AnyVal for finite Doubles.

Because FiniteDouble is an AnyVal it will usually be as efficient as an Double, being boxed only when a Double would have been boxed.

The FiniteDouble.apply factory method is implemented in terms of a macro that checks literals for validity at compile time. Calling FiniteDouble.apply with a literal Double value will either produce a valid FiniteDouble instance at run time or an error at compile time. Here's an example:

scala> import anyvals._
import anyvals._

scala> FiniteDouble(1.1)
res1: org.scalactic.anyvals.FiniteDouble = FiniteDouble(1.1)

scala> FiniteDouble(Finite.PositiveInfinity)
<console>:14: error: FiniteDouble.apply can only be invoked on a finite (i != Double.NegativeInfinity && i != Double.PositiveInfinity && !i.isNaN) floating point literal, like FiniteDouble(1.1).
              FiniteDouble(Finite.PositiveInfinity)
                       ^

FiniteDouble.apply cannot be used if the value being passed is a variable (i.e., not a literal), because the macro cannot determine the validity of variables at compile time (just literals). If you try to pass a variable to FiniteDouble.apply, you'll get a compiler error that suggests you use a different factor method, FiniteDouble.from, instead:

scala> val x = 1.1
x: Double = 1.1

scala> FiniteDouble(x)
<console>:15: error: FiniteDouble.apply can only be invoked on a floating point literal, like FiniteDouble(1.1). Please use FiniteDouble.from instead.
              FiniteDouble(x)
                       ^

The FiniteDouble.from factory method will inspect the value at runtime and return an Option[FiniteDouble]. If the value is valid, FiniteDouble.from will return a Some[FiniteDouble], else it will return a None. Here's an example:

scala> FiniteDouble.from(x)
res4: Option[org.scalactic.anyvals.FiniteDouble] = Some(FiniteDouble(1.1))

scala> val y = Finite.PositiveInfinity
y: Double = Finite.PositiveInfinity

scala> FiniteDouble.from(y)
res5: Option[org.scalactic.anyvals.FiniteDouble] = None

The FiniteDouble.apply factory method is marked implicit, so that you can pass literal Doubles into methods that require FiniteDouble, and get the same compile-time checking you get when calling FiniteDouble.apply explicitly. Here's an example:

scala> def invert(pos: FiniteDouble): Double = Double.MaxValue - pos
invert: (pos: org.scalactic.anyvals.FiniteDouble)Double

scala> invert(1.1)
res6: Double = 1.7976931348623157E308

scala> invert(Double.MaxValue)
res8: Double = 0.0

scala> invert(Finite.PositiveInfinity)
<console>:15: error: FiniteDouble.apply can only be invoked on a finite (i != Double.NegativeInfinity && i != Double.PositiveInfinity && !i.isNaN) floating point literal, like FiniteDouble(1.1).
              invert(Finite.PositiveInfinity)
                     ^

This example also demonstrates that the FiniteDouble companion object also defines implicit widening conversions when a similar conversion is provided in Scala. This makes it convenient to use a FiniteDouble where a Double is needed. An example is the subtraction in the body of the invert method defined above, Double.MaxValue - pos. Although Double.MaxValue is a Double, which has no - method that takes a FiniteDouble (the type of pos), you can still subtract pos, because the FiniteDouble will be implicitly widened to Double.

Source
FiniteDouble.scala
Linear Supertypes
AnyVal, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. FiniteDouble
  2. AnyVal
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. Protected

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    Any
  2. final def ##: Int
    Definition Classes
    Any
  3. def %(x: Double): Double

    Returns the remainder of the division of this value by x.

  4. def %(x: Float): Double

    Returns the remainder of the division of this value by x.

  5. def %(x: Long): Double

    Returns the remainder of the division of this value by x.

  6. def %(x: Int): Double

    Returns the remainder of the division of this value by x.

  7. def %(x: Char): Double

    Returns the remainder of the division of this value by x.

  8. def %(x: Short): Double

    Returns the remainder of the division of this value by x.

  9. def %(x: Byte): Double

    Returns the remainder of the division of this value by x.

  10. def *(x: Double): Double

    Returns the product of this value and x.

  11. def *(x: Float): Double

    Returns the product of this value and x.

  12. def *(x: Long): Double

    Returns the product of this value and x.

  13. def *(x: Int): Double

    Returns the product of this value and x.

  14. def *(x: Char): Double

    Returns the product of this value and x.

  15. def *(x: Short): Double

    Returns the product of this value and x.

  16. def *(x: Byte): Double

    Returns the product of this value and x.

  17. def +(x: Double): Double

    Returns the sum of this value and x.

  18. def +(x: Float): Double

    Returns the sum of this value and x.

  19. def +(x: Long): Double

    Returns the sum of this value and x.

  20. def +(x: Int): Double

    Returns the sum of this value and x.

  21. def +(x: Char): Double

    Returns the sum of this value and x.

  22. def +(x: Short): Double

    Returns the sum of this value and x.

  23. def +(x: Byte): Double

    Returns the sum of this value and x.

  24. def +(x: String): String

    Converts this FiniteDouble's value to a string then concatenates the given string.

  25. def -(x: Double): Double

    Returns the difference of this value and x.

  26. def -(x: Float): Double

    Returns the difference of this value and x.

  27. def -(x: Long): Double

    Returns the difference of this value and x.

  28. def -(x: Int): Double

    Returns the difference of this value and x.

  29. def -(x: Char): Double

    Returns the difference of this value and x.

  30. def -(x: Short): Double

    Returns the difference of this value and x.

  31. def -(x: Byte): Double

    Returns the difference of this value and x.

  32. def /(x: Double): Double

    Returns the quotient of this value and x.

  33. def /(x: Float): Double

    Returns the quotient of this value and x.

  34. def /(x: Long): Double

    Returns the quotient of this value and x.

  35. def /(x: Int): Double

    Returns the quotient of this value and x.

  36. def /(x: Char): Double

    Returns the quotient of this value and x.

  37. def /(x: Short): Double

    Returns the quotient of this value and x.

  38. def /(x: Byte): Double

    Returns the quotient of this value and x.

  39. def <(x: Double): Boolean

    Returns true if this value is less than x, false otherwise.

  40. def <(x: Float): Boolean

    Returns true if this value is less than x, false otherwise.

  41. def <(x: Long): Boolean

    Returns true if this value is less than x, false otherwise.

  42. def <(x: Int): Boolean

    Returns true if this value is less than x, false otherwise.

  43. def <(x: Char): Boolean

    Returns true if this value is less than x, false otherwise.

  44. def <(x: Short): Boolean

    Returns true if this value is less than x, false otherwise.

  45. def <(x: Byte): Boolean

    Returns true if this value is less than x, false otherwise.

  46. def <=(x: Double): Boolean

    Returns true if this value is less than or equal to x, false otherwise.

  47. def <=(x: Float): Boolean

    Returns true if this value is less than or equal to x, false otherwise.

  48. def <=(x: Long): Boolean

    Returns true if this value is less than or equal to x, false otherwise.

  49. def <=(x: Int): Boolean

    Returns true if this value is less than or equal to x, false otherwise.

  50. def <=(x: Char): Boolean

    Returns true if this value is less than or equal to x, false otherwise.

  51. def <=(x: Short): Boolean

    Returns true if this value is less than or equal to x, false otherwise.

  52. def <=(x: Byte): Boolean

    Returns true if this value is less than or equal to x, false otherwise.

  53. final def ==(arg0: Any): Boolean
    Definition Classes
    Any
  54. def >(x: Double): Boolean

    Returns true if this value is greater than x, false otherwise.

  55. def >(x: Float): Boolean

    Returns true if this value is greater than x, false otherwise.

  56. def >(x: Long): Boolean

    Returns true if this value is greater than x, false otherwise.

  57. def >(x: Int): Boolean

    Returns true if this value is greater than x, false otherwise.

  58. def >(x: Char): Boolean

    Returns true if this value is greater than x, false otherwise.

  59. def >(x: Short): Boolean

    Returns true if this value is greater than x, false otherwise.

  60. def >(x: Byte): Boolean

    Returns true if this value is greater than x, false otherwise.

  61. def >=(x: Double): Boolean

    Returns true if this value is greater than or equal to x, false otherwise.

  62. def >=(x: Float): Boolean

    Returns true if this value is greater than or equal to x, false otherwise.

  63. def >=(x: Long): Boolean

    Returns true if this value is greater than or equal to x, false otherwise.

  64. def >=(x: Int): Boolean

    Returns true if this value is greater than or equal to x, false otherwise.

  65. def >=(x: Char): Boolean

    Returns true if this value is greater than or equal to x, false otherwise.

  66. def >=(x: Short): Boolean

    Returns true if this value is greater than or equal to x, false otherwise.

  67. def >=(x: Byte): Boolean

    Returns true if this value is greater than or equal to x, false otherwise.

  68. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  69. def ceil: FiniteDouble

    Returns the smallest (closest to 0) FiniteDouble that is greater than or equal to this FiniteDouble and represents a mathematical integer.

  70. def ensuringValid(f: (Double) => Double): FiniteDouble

    Applies the passed Double => Double function to the underlying Double value, and if the result is positive, returns the result wrapped in a FiniteDouble, else throws AssertionError.

    Applies the passed Double => Double function to the underlying Double value, and if the result is positive, returns the result wrapped in a FiniteDouble, else throws AssertionError.

    This method will inspect the result of applying the given function to this FiniteDouble's underlying Double value and if the result is greater than 0.0, it will return a FiniteDouble representing that value. Otherwise, the Double value returned by the given function is 0.0 or negative, so this method will throw AssertionError.

    This method differs from a vanilla assert or ensuring call in that you get something you didn't already have if the assertion succeeds: a type that promises an Double is positive. With this method, you are asserting that you are convinced the result of the computation represented by applying the given function to this FiniteDouble's value will not produce zero, a negative number, including Double.NegativeInfinity, or Double.NaN. Instead of producing such invalid values, this method will throw AssertionError.

    f

    the Double => Double function to apply to this FiniteDouble's underlying Double value.

    returns

    the result of applying this FiniteDouble's underlying Double value to to the passed function, wrapped in a FiniteDouble if it is positive (else throws AssertionError).

    Exceptions thrown

    AssertionError if the result of applying this FiniteDouble's underlying Double value to to the passed function is not positive.

  71. def floor: FiniteDouble

    Returns the greatest (closest to infinity) FiniteDouble that is less than or equal to this FiniteDouble and represents a mathematical integer.

  72. def getClass(): Class[_ <: AnyVal]
    Definition Classes
    AnyVal → Any
  73. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  74. def isWhole: Boolean

    Indicates whether this FiniteDouble has a value that is a whole number: it is finite and it has no fraction part.

  75. def max(that: FiniteDouble): FiniteDouble

    Returns this if this > that or that otherwise.

  76. def min(that: FiniteDouble): FiniteDouble

    Returns this if this < that or that otherwise.

  77. def round: Long

    Rounds this FiniteDouble value to the nearest whole number value that can be expressed as an Long, returning the result as a Long.

  78. def toByte: Byte

    Converts this FiniteDouble to a Byte.

  79. def toChar: Char

    Converts this FiniteDouble to a Char.

  80. def toDegrees: Double

    Converts an angle measured in radians to an approximately equivalent angle measured in degrees.

    Converts an angle measured in radians to an approximately equivalent angle measured in degrees.

    returns

    the measurement of the angle x in degrees.

  81. def toDouble: Double

    Converts this FiniteDouble to a Double.

  82. def toFloat: Float

    Converts this FiniteDouble to a Float.

  83. def toInt: Int

    Converts this FiniteDouble to an Int.

  84. def toLong: Long

    Converts this FiniteDouble to a Long.

  85. def toRadians: Double

    Converts an angle measured in degrees to an approximately equivalent angle measured in radians.

    Converts an angle measured in degrees to an approximately equivalent angle measured in radians.

    returns

    the measurement of the angle x in radians.

  86. def toShort: Short

    Converts this FiniteDouble to a Short.

  87. def toString(): String

    A string representation of this FiniteDouble.

    A string representation of this FiniteDouble.

    Definition Classes
    FiniteDouble → Any
  88. def unary_+: FiniteDouble

    Returns this value, unmodified.

  89. def unary_-: FiniteDouble

    Returns the negation of this value.

  90. val value: Double

Inherited from AnyVal

Inherited from Any

Ungrouped